Flexpipe Blog

Learn more about the Flexpipe system and its applications with Continous improvement, Kaizen Blitz, Lean Six Sigma, 5S and more.


How to optimise material Flow with a Tugger Cart system?

How to optimise material Flow with a Tugger Cart system?

When companies need to safely move loads, equipment, or machinery from one location to another, they often turn to tuggers. Some tuggers are simple hand-held carts or trolleys that allow operators and employees to drag, pull or tug raw materials, consumables, and finished goods. Other tuggers are heavy-industrial machines capable of pulling upwards of 100-plus metric tons.

 

 
A Simple Material Handling Solution
Tuggers are an ideal material handling solution for replacing forklifts. Whereas a forklift can only transport one load at a time, a tugger can transport several carts and, therefore, several loads. Instead of using a one-load-at-a-time forklift, companies can link multiple tow carts together and make a single trip instead of several.

A tugger is sometimes a generic term for equipment or machinery pulling or towing heavy loads. While there are thousands of industrial uses for tuggers, understanding how, when, and why these critical tools are used comes down to defining tuggers in terms of their load-bearing capacity.

We’ll explain when heavy-industrial tuggers and towing equipment are used, what warehousing, distribution, and retail locations use, and what solutions are best suited for lean manufacturing environments. The goal is to understand why tuggers are the perfect material handling solution when needing to move multiple loads.
Heavy-Industrial Tuggers
Companies within the aerospace, automotive, construction, and rail industries rely upon battery-powered, motorized, and walk-behind tuggers to ensure the safety of operators and employees. These tuggers can move or pull anywhere from 1000 lbs to 100 metric tons.

So, where do you see these heavy-industrial tuggers? Any time you take a flight for a business trip or vacation, you’ll see these commercial tuggers – often called tow tractors, aircraft caddies, aircraft walkies, or towers - moving loads from one location throughout the landing strip to the next.

These solutions move passenger luggage, shipments, and fuel to and from aircraft. They’re also used to move aircraft themselves, provided the aircraft’s load doesn’t exceed the pulling or towing capacity of the tow tractor or tugger.

Photo credit: DJ Products Inc. AircraftCaddy and Railcar Mover
It’s this type of towing capacity that is used within multiple industries. The rail industry relies upon heavy-industrial tuggers when needing to repair rail cars and locomotives. The construction and automotive industries also use these material handling solutions. However, these applications typically involve moving a single heavy load at a time, such as a rail car or plane. So, what about when needing to pull, tow, and carry multiple loads?
Tuggers for Warehousing and Distribution
Imagine what it takes to move finished goods inside an expansive warehouse and distribution location like Amazon. Think about the distance that needs to be covered to maintain and replenish inventory skews and how often those distances are traveled in an hour, day, week, month, and year. Now, think about how much it would cost companies to replenish that inventory using only a forklift.

Extensive warehousing and distribution facilities save money and time by keeping their forklifts for loading and unloading new shipments while relying upon tuggers to transport those loads throughout their facility.

Battery-powered and motorized tuggers are highly-engineered machines capable of pulling multiple heavy carts linked together. This allows distribution and warehousing facilities to transport large quantities of materials, semi-finished parts, tools, and finished goods long distances. Forklifts are used to remove incoming shipments from trucks while the tugger carries multiple loads throughout the warehouse.
Hand-Held Tuggers and Electronic Tuggers for Retail
Depending on the retailer’s size, they may use small battery-powered tuggers such as DJ Product’s WagonCaddy.

This simple cart can carry upwards of 3000 lbs, making it ideal for moving parcels and products to store shelves.

It’s also an ideal solution for moving pallets and incoming shipments to and from the warehouse. These walk-behind solutions ensure operators and employees are positioned behind heavy loads so that any unforeseen spillage or fall won’t injure warehouse and store employees.
Tugger Solutions for Manufacturers
Tuggers are a critical material handling solution for manufacturers. They help to transport multiple loads at a time, allowing tugger operators to drop off essential materials and tools at individual workstations while transporting finished goods back to the warehouse.

 

As is often the case with lean manufacturing, the emphasis must be on minimizing transit times. This means manufacturers must plan their transit and delivery routes well in advance.

The journey starts within the warehouse, where tuggers either take loads from stocking shelves or take them right from the warehouse docking station.

Next, clearly-defined delivery routes ensure the tugger can pull all carts safely to their destination.

The goal of the tugger is to transport the loads to the designated replenishment area, such as a kitting location or a lean manufacturing workstation.

A staging location must be identified outside these lean manufacturing work cells so that operators and technicians can quickly and safely unload the materials, consumables, and semi-finished goods.

Warehouse or Docking Station: Make sure your loading and unloading procedures and processes for incoming and outgoing shipments are clearly defined. You may choose to use the tugger and tow carts immediately after shipments are unloaded at the docking station. You may also be able to have your suppliers provide deliveries that can easily be broken down for separate locations within your warehouse or when moving parts out to lean manufacturing work cells.
Delivery / Transit Routes: Take time to properly lay out your transit routes. Be mindful of high-traffic areas where two or more tuggers may intersect during transit. Split your routes up. Ensure directions are clearly marked along each of the paths. Safety during this process is of paramount importance so use clear markers that operators and technicians can easily identify.
Designated Unloading Location / Part and Material Staging: You can easily combine both of these into one area. However, if you do, ensure you’ve identified how far tuggers can advance to unload the materials or semi-finished goods from the tow carts. Your unloading processes should be well explained. Again, it’s about ensuring the safety of operators and technicians so that material and parts can quickly, easily, and safely be unloaded beside the lean manufacturing work cell.
Transit Route Back to Warehouse: This is why clearly outlining transit routes and directions is so important. It ensures minimal traffic jams and free passage for each tugger during transit. Ensure your delivery/transit route to and from the warehouse is free of obstructions or areas where the tugger and its carts might come into contact with equipment and machinery.

Tuggers and Flexpipe Tuggable Carts: Perfect Combination of High-Load Capacity and Flexibility
Any time a manufacturer pursues lean concepts, they must balance their need to increase production throughput with the importance of ensuring a safe work environment for employees. After all, there are no benefits to lean manufacturing if employees, operators, and technicians start missing time due to severe injuries.

While lean manufacturing aims to reduce the impact of idle time, minimize work stoppages, reduce cycle times, and increase production throughput, the ultimate goal for any company pursuing lean manufacturing is to accomplish all these benefits without putting operators at risk. This means optimizing your tugger and tow cart combination.

Choosing your tugger comes down to defining the loads and the weight they’ll transport. You never want to go too low on your weight estimate. A good rule is to take the number of stops your tugger will make during transit from the warehouse to each unloading area. Next, you’ll need to calculate the estimated weight of each drop-off of material and parts at a given lean work cell or kitting area.

Once you’ve chosen your tugger, you’ll need to choose your tugger carts. You essentially have two options. The first involves choosing fixed carts that are either welded or manufactured to specific dimensions.

Your second option is to choose a tube and joint system like Flexpipe where you can make your own scalable and modular carts that can easily be adjusted or modified as you see fit.

Fixed Structure / Welded Carts:

At some point, the weight, size, and configuration of what your tow carts carry to and from the warehouse will change. That change can be an internal decision made by your company or one made by your customers. It can be as simple as changing the design of your finished product or winning a new contract or bid.

When that change occurs, you’ll need to either change your tow carts and buy new ones or refurbish and repair your existing fixed carts. Either way, it’s an expensive change. Repair and refurbishment can take weeks, if not months, and involve a substantial amount of money. Purchasing new tow carts is even more costly.

Refurbishment, repair, or reconditioning is expensive and can take weeks if not months
Purchasing new fixed tow carts is more expensive than repairing what you already have.

It’s not uncommon for manufacturers to have multiple types of fixed tug carts, as depicted in the images above. This only increases a manufacturer’s costs when needing to refurbish or replace their tow carts.

 

[caption id="attachment_7582" align="alignnone" width="1000"] Flexpipe Modular and Scalable Tow Cart[/caption]

Modular and Scalable Flexpipe Carts:

On the one hand, you have expensive fixed tow cart structures you buy or repair. However, on the other hand, you can make your own cost-effective tow carts with Flexpipe’s tube and joint system.

Modular and scalable Flexpipe tube and joint systems are not only less expensive, but changing or modifying a Flexpipe tow cart takes hours – not days, weeks, or months. With Flexpipe, manufacturers only pay for the tubes, joints, castors, and other miscellaneous parts needed to assemble their tow carts.

The flexibility afforded to manufacturers means the costs of a Flexpipe tow cart are less, and any changes or modifications can be done in a fraction of the time compared to fixed structures.

Manufacturers pay for materials
Manufacturers can assemble their own structures at a fraction of the cost compared to fixed structures.
Manufacturers can easily change their tow carts as needed.


Empower Your Operators with Flexpipe Inc.
Flexpipe Inc. is a Montreal-based designer of tube and joint solutions for material handling. The company’s customer-centric approach and flexible piping solutions empower manufacturers to make their own material handling structures at a fraction of the cost and time it takes to get fixed structures.

The Flexpipe ergonomic solution is scalable, easily modified, and quick to assemble. To learn more about this simple system, contact us now.
About DJ Products:
DJ Products has been designing, manufacturing, and supplying electric-powered, battery-powered, and walk-behind heavy industrial tuggers and towing solutions for over 20 years. The company’s product line includes warehouse tuggers, semi-trailer movers, small aircraft tugs, pull carts, caddies, and dumpster moving equipment.

How to Sell Continuous Improvement to Senior Management

How to Sell Continuous Improvement to Senior Management

Regardless of the company – or the industry – senior managers in manufacturing enterprises need to make decisions based on cold, hard, irrefutable facts. They need numbers. They need data. They need to ensure that their decision to move forward has a high probability of success.

Senior managers need this critical information to make a go/no-go decision on capital expenditures, hiring, expansion, machine and equipment repairs, or, more aptly, for pursuing continuous improvement projects.

Learn more about the three fundamental principles needed to convince senior managers to pursue continuous improvement initiatives and how Flexpipe structures are critical to that goal with insight from Leslie Pickering and Mark Zeilinger of Quadrant 5.
Pursuing Continuous Improvement Initiatives
In manufacturing environments, waste can take many forms. It can include work stoppages, human error, misaligned or out-of-tolerance parts, poorly assembled parts, machine downtime, redundant tasks, repetitive tasks, or any action or process that inhibits the natural flow of work.

Sometimes, reducing waste in manufacturing can be as simple as reducing the transit times to move work-in-process parts between cells. It could include revamping a workstation so that the assembly process is more seamless and the operator within the workstation has easier access to materials and tools.

Regardless of what approach is taken, these changes initially seem small. However, when repeated across all work cells, these small changes quickly add up until costs are reduced, quality is improved, and more finished goods are produced. Unfortunately, because these small steps seem so inconsequential, senior managers have difficulty viewing the benefits of adopting lean concepts.

As stated by Leslie, “Senior Managers are really good at developing global views – where they can see the end game or the end goal – but they often don’t take a sequential process to how those goals are achieved – what steps need to be taken sequentially to get there. Your job in continuous improvement is explaining the steps to achieve that goal.”
A Simple Three-Step Process
Ultimately, adopting continuous improvement initiatives can be summarized in three overriding steps. Leslie states, “1. This is what is currently happening. 2. This is what we’re trying to do, and 3. These will be the benefits of implementing lean.” So, does that mean you simply verbalize these issues to senior management, and they’ll quickly agree to pursue lean initiatives? No, it does not.

These three steps are merely guidelines. You must gather the hard facts that senior managers need to implement lean. Your goal includes gathering the data and defining the metrics that will help senior managers measure the return on investment (ROI) for enacting continuous improvement across the entire production floor.
Cycle Times and Throughput Volumes Are Key

All work operations or work tasks involved in making a product have a cycle time. Lowering cycle times means you’re manufacturing more products at a lower cost. The question senior managers want to be answered is whether the savings of implementing lean are higher than the cost of implementing lean.

In our example, we’re using a basic cycle diagram (below) showing the steps for manufacturing a product. Our basic cycle diagram defines each work process or manufacturing step involved in making a fictitious product.

For the sake of simplicity, we’ll assume that each of these “steps” represents a single work cell. Each cell has a specific cycle time for a given work operation –the time it takes an operator to complete a work task.

Each cell also has a throughput volume – that volume of semi-finished parts the cell completes before those parts move to the next chain in the process.

This exercise aims to gather data on how lean initiatives can 1) Lower cycle times, 2) Increase throughput, 3) Lower manufacturing costs, and 4) Shorten the lead time to get finished goods to customers.

At the end of the exercise, you’ll have the data you need to show senior management what was happening, what you changed and why, and how making similar changes across all cells will result in lower cycle times, increased throughput, and reduced costs – or to paraphrase Leslie “the benefits of implementing lean.”
Manufacturing / Cell Productivity Rate
While operators might be paid for an 8-hour shift, they do not work a total of 8 hours. You must account for two 15-minute breaks in the morning and afternoon and then lunch. In our example, we’ll assume it’s a one-hour lunch. That leaves 6.5 hours of actual available work time.

Now, nobody can work at 100% efficiency. People go to the bathroom, get called away, or are interrupted for valid reasons. We’ll assume that the operator works at 85% efficiency. This means that the work time is 5 hours and 35 minutes.

We’ll now use that 5 hours and 35 minutes when calculating the work cell’s throughput.

 
1.“This is What is Currently Happening.”
 

Every lean process has a beginning, and we’ll assume that beginning includes you focusing on an initial assessment of a single work cell. Start by assessing the cycle times for each work task in your chosen work cell.

Ensure the operator or employee of the cell understands that your goal is to help make their job easier.

Make them feel part of the process, and they will be more than willing to show you some of the issues they come across.

Ensure they understand that this exercise is not about timing them but capturing the causes of work stoppages.

Mark of Q5, “We’re always touching on the human element. How do you get people engaged? That’s where improvements happen. Nobody knows that piece of equipment or machinery better than the operator themselves. So, you really need their input. The approach is to create “an island of excellence,” something people can point to as an example. So, give people recognition – a pat on the back and make them feel part of the continuous improvement process.”

Operation
Work Cell #1

Unit of Measure
Cycle Time in Minutes converted to seconds

Product
Widget X

Set Up-Time Minutes
Conversion of Minutes to Seconds
 Number of Work Operations
Cycle Time
Conversion of Minutes to Seconds
Comments / Notes

30
1800
1
7,00
420,00
Missing material (Operator had to search for material)

2
8,00
480,00
Missing assembly instruction

(Operator had to search for instructions)

3
25,00
1500,00
Broken SawBlade / No replacement (Operator had to leave work cell and go to stores to get replacement blade)

4
5,00
300,00
No issues - clean work task

5
5,00
300,00
No issues - clean work task

6
8,50
510,00
Missing assembly instruction

(Operator had to search for instructions)

7
9,00
540,00
Missing tool (lack of tool placement caused delay)

8
5,00
300,00
No issues - clean work task

9
5,00
300,00
No issues - clean work task

10
15,00
900,00
Missing tool (lack of tool placement caused delay)

Averages
9,25
393,90

 

You’re going to create your own “island of excellence” by using these initial cycle times within the cell to show the issues the operator faces daily. You’ll also capture any reasons for delays or work stoppages.

In our example, the cycle times with no issues are done in five minutes or 300 seconds. We’ve converted it to seconds because even the smallest changes that save a couple of seconds can dramatically impact.

Now, the 5-minute cycle time may not be the optimized cycle time, but for this example, it’s the best cycle time this cell produces.

However, the average cycle time at the bottom is skewed by the operations (1,2,3,6,7, and 10) that encountered work stoppages. This means these work stoppages pushed the average cycle time to 9 minutes, 25 seconds, or 555 seconds.

There is no hard and fast rule about how many cycle times you should track. In our above example, we’ve tracked ten cycle times. We’ve converted those times from minutes to seconds to simplify how we calculate how much the work cell produces.

Deduct the 30-minute setup time from our manufacturing productivity rate of 5 hours and 35 minutes.
Take the remaining 5 hours and 5 minutes and convert them to seconds. This gives us 18,300 seconds of available work time.
Now, divide the 18,300 seconds by the cycle time in seconds, which is 555. This gives us a work cell throughput of 33 units.

 

 

The table below summarizes the data you’ve gathered from the work cell. Now, it’s more than likely that you already know what a given work cell produces. You may also know what the cycle times are. Plenty of MRP and ERP software solutions provide cycle time data.

However, no software can show you how to reduce the cycle times. It can only report them. It can only provide numbers. You need to see for yourself what causes work stoppages. Only then can you enact strategies to reduce those cycle times and increase throughput.

Operation
Average Cycle Time in Minutes
Average Cycle Time in Seconds
Total Number of Seconds (5 hours 5 minutes)
Work Cell Throughput

Work Cell #1
9,25
555,00
18300
33

 

You now have data on a work cell that defines Leslie’s first statement: “This is what is currently happening.” You have a list of the most common delays encountered by the operator in the work cell. You know the causes of higher cycle times and can enact strategies to eliminate those causes.
2.“This Is What We’re Trying to do.”
One of your changes included making a modular and scalable Flexpipe tool storage rack. You then placed this rack immediately outside the work cell, so the operator no longer has to walk to inventory to get replacement saw blades.

Another change included making a Flexpipe workstation where all tools and consumables are easily located. You combined this new workstation with a modular flow rack so that replacement consumables and materials are always readily available.

Finally, you’ve created a modular Flexpipe work center where the operator can easily access assembly instructions.

Storage Rack: Machine Parts (Blades)
Modular Workstation
Modular Flow Rack
Modular Work Center with instructions

After making these changes, you revisit the work cell and take a new set of cycle times.

While there are still operations that encounter some delays, the overall benefit is that you have achieved more operations that meet the desired cycle time.

 

Operation
Work Cell #1

Unit of Measure
Cycle Time in Minutes converted to seconds

Product
Widget X

Set Up-Time Minutes
Conversion of Minutes to Seconds
 Number of Work Operations
Cycle Time
Conversion of Minutes to Seconds
Comments / Notes

30
1800
1
5,00
300,00
No issues - clean work task

2
7,00
420,00
Misaligned part - small adjustment

3
5,00
300,00
No issues - clean work task

4
5,00
300,00
No issues - clean work task

5
5,00
300,00
No issues - clean work task

6
7,35
441,00
Replacement Tool needed - easily found - small delay

7
7,30
438,00
Replacement Tool needed - easily found - small delay

8
5,00
300,00
No issues - clean work task

9
5,00
300,00
No issues - clean work task

10
14,00
840,00
Broken Saw Blade - Replacement blade in material flow rack immediately outside work cell minimized replacement time.

Averages
6,57
393,90

 

A new workstation made locating replacement tools easier for the operator.

Placing a storage rack for replacement saw blades immediately cut down on the time the operator took to replace the blade.

Instead of a 25-minute cycle time or “delay,” the operator merely located the replacement blade and made a change that only took 14 minutes.

Ultimately, your average cycle time was lowered to 6 minutes and 57 seconds.

The lower cycle times mean the work cell increased its throughput by 41%, from 33 to 46 units.

 

Operation
Average Cycle Time in Minutes
Average Cycle Time in Seconds
Total Number of Seconds (5 hours 5 minutes)
Work Cell Throughput

Work Cell #1
6,57
393,90
18300
46

3.“These Will be the Benefits of Implementing Lean.”
Increasing throughput in a work cell accomplishes nothing if the remaining work cells don’t make similar continuous improvement changes. All you’re doing is creating a backlog for the next cell in the process.

You’ve increased the cell’s throughput, but without making similar changes to the remaining work cells, it’s all for naught. At this point, you’ve gathered enough data to show how making small incremental changes can have a dramatic impact on a work cell’s throughput.

 

 

Senior managers often have little choice but to move forward on additional continuous improvement initiatives when presented with this data. It’s now very easy for them to see how repeating the process will lead to significant improvements and savings.

The costs of a Flexpipe structure include the cost of the materials and the time it takes your operators to assemble structures. That initial cost is minimal when compared to the constant returns of pursuing lean principles. The benefits of lean are forever.

As stated by Mark, “That’s what we love about Flexpipe. It’s really easy just to try something. There’s no downside whatsoever. Cut a pipe too short, and we’ll just use it elsewhere.”

Ultimately, the company would achieve the following benefits if you pursued similar continuous improvement initiatives with the remaining cells.

Increased Manufacturing Throughput: More parts are produced in a day, week, or month.
Reduced Costs: The company achieves lower manufacturing costs by increasing the number of finished parts produced within an 8-hour shift.
Shorter Lead Times: Reducing cycle times and increasing cell throughput means you’ve reduced the time it takes to provide finished goods to customers.
Improved Machine Utilization: There is nothing more costly for manufacturers than having idle machinery. In the example above, having consumables and spare parts for machinery immediately outside the work cell helped to reduce the time the machine was sitting idle.
Better Ergonomics and Safety: Poorly constructed work cells often include hazards that lead to human error and injuries. Worker injuries and absenteeism cost manufacturers $1,100.00 per day per worker. Take the number of missed days due to injury over a given year and use that amount as further justification for pursuing continuous improvement initiatives.

 
Cost-Effective Flexpipe Material Handling Solutions
Flexpipe is a Montreal-based supplier, designer, and integrator of modular, scalable tube and joint systems for material handling. The company’s customer-centric focus and proactive approach empower manufacturers to make their structures at a fraction of the cost compared to fixed material handling systems.

The company’s free design extension for SketchUp is easy to use and provides a complete assembly drawing, material cost breakdown, and bill of materials.

If you would like to see how Flexpipe can help on your next continuous improvement project, contact us now.

About our Lean expert - Leslie Pickering

Mr. Pickering holds a degree in Mechanical and Production Engineering. He brings 35 years of experience in international process improvement, manufacturing, and operations. He is a recognized Toyota Production System specialist and is highly regarded as a Subject Matter Expert in the areas of Lean Manufacturing.

About our Lean expert - Mark Zeilinger

Mr. Zeilinger holds a degree in Mechanical Engineering. He brings over 30 years of experience in manufacturing and operations. Mr. Zeilinger is a recognized Toyota Production System Specialist, who has implemented successful transformation methodologies across a wide variety of industries, including Packaging, Electronics, Construction, Plastics, Food, Automotive, and Aerospace.

Standard and Non-Standard Surfaces at Flexpipe

Standard and Non-Standard Surfaces at Flexpipe

There are several steps to designing a Flexpipe modular structure. One of them includes choosing the material you’ll use. You’ll need this information to determine how many pipes you’ll need, how many connectors and accessories you’ll use, and most importantly, whether you want your structure to have surfaces.

This article will outline the four types of surfaces that Flexpipe offers, and some others used by our customers.
The Flexpipe Standard
Despite the unprecedented number of existing surfaces, at Flexpipe, we have defined a standard of three surfaces. These three surfaces meet most of our customers' needs. The following list includes these four and other surfaces our customers use.

*For the installation of surfaces, with 1/2" surface you can use either F-SF81 from the top or AO-EMT1 and F-S81/2 and for 1/4" surface you can install them with F-SF81 from the top or with help of different accessories with some bolts like the AI-CORNER or the AI-SUPPORT.*
1. HDPE
Pricing: $$$

Due to its flexibility, high-density polyethylene (HDPE) is the most commonly used surface in Flexpipe structures. Used to make workstation tops, it’s also a great material to make drawers, shelves, or even footrests. HDPE comes in several colors and formats. Flexpipe offers 48” x 96” sheets of ½ or ¼-inch thick in white or black. Long considered the surface of choice when making modular systems, HDPE is highly resistant and solid. It’s important to note that black HDPE is less expensive because it’s recycled.

2. The Aluminum Composite
Pricing: $

Aluminum Composite is a 1/16-inch thin sheet of HDPE pressed between two 1/32-inch aluminum sheets. Because it’s so thin, Aluminum Composite can easily be damaged. This means it is better used as a shelving solution or to close off the sides of a structure – instead of using it for the top of a workstation. This surface has two different finishes: a matte side and a shiny side. It comes in a 48” x 96” and 1/8” thick sheet.

3. Pegboard
Pricing: $$

Used to complement structures, the pegboard hangs objects using small hooks inserted directly into the pegboard. It is more often used with workstations or shadow boards. The pegboard is made fro ma HDPE sheets with 3/16''  hole with 1'' center-to center distance between them. Incorporate it into any workstation's design to make tools easily accessible. Save space and increase productivity. It comes in a 48” x 96” and 1/4” thick sheet.

Non-Standards
The following surfaces are not part of the Flexpipe standard. However, they have been used by Flexpipe in some manufacturing projects at the request of our customers.
1. UHMW
Pricing: $$$$

UHMW stands for ultra-high molecular weight polyethylene. This type of HDPE has electrostatic discharge (ESD) protection. This surface protects against electrostatic shocks between people and the structure or between people and the product. UHMW is mainly used by Flexpipe customers who manufacture electronic products.

2. Plywood
Pricing: $$

A less popular material but less expensive option is wood or plywood. While plywood is easily accessible and has some positives, such as its price and protective ESD properties, it also has some negatives. Among them includes the fact that plywood can be easily damaged. It’s also more challenging to work with when compared to plastic. Finally, it’s susceptible to liquids and moisture.

3. Prefabricated
Pricing: $$

Although many people design their structures and then plan their surfaces, some prefer to build their structures from a surface. For example, they find a surface they would use for a workstation or a desk and then work to create a structure that will adapt perfectly to that surface.

Conclusion
Regardless of the type of surface you choose, your choice must be ideal for your job. If you still doubt your choice, you can quickly contact us through the chat at the bottom right of this page or contact the project manager in your area. To find the nearest project manager, visit the contact page.

Why you should use AGVs on your assembly line

Why you should use AGVs on your assembly line

LISTEN: Audio Interview with Bruce Buscher

In this interview, Bruce Buscher, VP of Daifuku’s AGV group answers all the questions you may have about all the benefits of having an AGV in your facilities.

Your browser does not support the audio element.

 

An automated guided vehicle (AGV) is a computer-controlled vehicle used to carry or tow materials in a manufacturing facility. In this video, Bruce Buscher, vice-president of Daifuku’s AGV group, explains why AGVs are a great solution for your assembly line and how you can integrate them with your material handling system.
Why use AGVs on your assembly line?
[caption id="attachment_38318" align="alignnone" width="801"] Credit: Daifuku.com[/caption]

The biggest advantage of using automated guided vehicles on your assembly line is flexibility. Traditional assembly lines are made up of structures such as towline conveyors and overhead conveyors that are permanently attached to the floor, making it difficult to change the configuration of the line after installation. By contrast, on an assembly line made up of AGVs, the vehicles carry the materials from station to station, and the path they follow can be modified at any time to suit different production requirements. This opens up a world of possibilities for your workflow, enabling you to maximize efficiency and reduce waste.

For instance, you’re no longer restricted to following a straight line. According to the rules of circular manufacturing, straight-line processes create waste by forcing workers to travel from one end of the warehouse to the other at the end of each cycle. With an AGV assembly line, you can organize your workflow in whatever shape makes the most sense for a particular process, whether that’s a U shape or a Christmas-tree pattern with deviations for additional tasks such as quality checks and customizations.

Using AGVs also eliminates the need for a human to deliver parts to the assembly line, which means operators are more likely to receive parts at the precise moment they need them. This can help you achieve more consistent cycle times and adjust takt times as needed to meet customer demand.
How can you integrate AGVs with other material handling equipment?
[caption id="attachment_38480" align="alignnone" width="900"] Credit: Assembly Magazine[/caption]

For maximum flexibility in your workflow, it’s best to pair AGVs with a tube and joint system. Load handling frames built from tubes and joints are relatively inexpensive and can be easily configured to carry parts of varying shapes and sizes, which makes them a popular choice in many manufacturing environments. According to Bruce, the use of AGVs with tube and joint products is especially common in supermarkets and line of sight delivery systems. It’s easy to see why: to fully take advantage of the flexibility offered by AGVs, you’ll need material handling equipment that’s equally adaptable. For example, you might decide to consolidate your workflow and reduce the number of stations on your assembly line. If your load handling frames are made of welded steel, it’s going to be time-consuming and costly to replace them, whereas tube and joint frames are designed to be reconfigured at will.
Is it possible to start small and add more AGVs later on?
[caption id="attachment_38485" align="alignnone" width="835"] Credit: Daifuku[/caption]

There’s no need to overhaul your entire assembly line in one go. If you’re not sure where AGVs would best fit into your workflow, you could start by identifying areas of waste or reduced productivity (creating a value stream map is a great way to do this) and assess whether an automated guided vehicle could solve the problem. For instance, you might notice that one of your operators always has to wait for parts to arrive at their workstation before they can begin their task, which creates a bottleneck in your production chain. The solution might be to program an AGV to deliver the required parts precisely when the operator needs them. Alternatively, you could search for a way to reduce the time your workers spend moving pallets through the warehouse. AGVs can help with that, too.

In short, whether you’re looking to streamline your entire operation or make a few small adjustments to achieve a leaner workflow, AGVs are an excellent tool to have at your disposal.

About our Lean expert - Bruce Buscher

Mr. Buscher has been leading the charge to automate manufacturing and assembly processes for more than 40 years. He first started as an engineer on the plant floor and has been the VP of Daifuku’s AGV group for the last fifteen years. Bruce and his team developed a full line of standard AGV Products and Navigation Technologies to solve Assembly Line challenges and drive out costs. They have deployed AGV’s in assembly lines across all industries.

Daifuku uses AGV’s to solve basic issues such as Ergonomics, Safety, Workforce Turnover, and Cost Reductions. As the oldest AGV manufacturer in North America, Daifuku has continuously led the way in automating assembly lines over the last 100 years and doing it with AGV’s since 1962.

Best tools to cut deckings

Best tools to cut deckings

Assembling any Flexpipe structure invariably means cutting deckings. Your goal is to have deckings that is clean, safe, and free of sharp edges. So, what type of equipment do you need to cut your deckings? Fortunately, there are multiple solutions you can use.

We’ve put together a list of the most common tools Flexpipe and our customers use when cutting deckings.

*To provide the best possible cut for every surface, Flexpipe uses blades for woods with 60 carbon teeth. Most of the equipment we’ll cover is likely equipment you already have.*
Performing the First Cuts
1. Panel Saw / Vertical Saw
This often-used and universal tool can be found in any hardware store or construction site. The panel saws allow you to cut multiple surfaces with minimal interference or problems. We use it to cut large surfaces such as 48” x 48”, 48” x 72”, and 32” x 96” etc.

2. Table Saw
Table saws allow us to cut small or large surfaces. It is an extremely versatile and relatively inexpensive solution that most manufacturers either have already or can afford. You can cut surfaces measuring 2” x 10” or as large as 48” x 72”.

3. Circular Saw
The circular saw provides a simple and immediate solution when making Flexpipe deckings. It allows us to cut tight corners and angles on both large and small surfaces. We can also perform vertical cuts on wide surfaces . However, special attention is required when using hand tools so be sure to be extremely careful.

4. Miter / Bevel Saw
Flexpipe doesn’t typically use miter or bevel saws but there are a few instances where we need them to cut small surfaces and corners. It’s not a high-use tool but it can help in some circumstances.

5. Band Saw
While Flexpipe doesn’t often use Band Saws, they are still useful when it comes to cutting specific shapes – other than just square or rectangular cuts. We also use it at times to make precision cuts on small surfaces or to make rounded corners.

6. Jigsaws
While some may claim that band saws and jigsaws can perform the same type of cut, for Flexpipe, the jigsaw provides an advantage that Band Saws don’t. First, as a hand-held tool, you have greater control and can make more precise cuts. However, again, it’s important to be careful when using hand-held tools.

7. Hole Saws
Hole saws are most often associated with hand-held drills. They aren’t used for cutting straight lines but are used to cut out circular rings in materials. This means you can use them to remove material within the circular cut to install connectors or to pass tubes. It can also be used to make edges round but doing this means you’ll need the circular saw to finish the job.

Finitions of the surface
Now that we’ve taken care of the cutting, we need to move on to finishing. Regardless of whether you want to make a shelving unit, drawer, or workstation, you’ll ultimately need to make sure the surface is free of debris, is smooth, and doesn’t have any burs.

Flexpipe relies upon two tools for finishing. We use them to ensure our decking does not have any sharp edges or protruding parts. The goal with any final Flexpipe structure is to ensure that it is finished properly and safe for use by our customers and their employees.
1. Right Angle Die Grinder
This is another hand-held too so be careful during use. This tool is ideal for sanding down uneven connections between two surfaces and providing a smooth finish. This is especially useful if you’ve used a saw that doesn’t leaves a smooth surface or leave cut marks.

2. Hand-Held Deburrer
A deburrer is another handheld tool that helps remove sharp edges. It’s also ideal for working on corners that are considered too square for other tools. For sharp edges and round corners, using anything else but a deburrer could cause problems or even injuries to employees.

Conclusion
Always be sure to draw an outline or generate a schematic of your decking long before you start any cutting. This will help you choose the right tool for the right job.

Each of these tools has either been used in-house at Flexpipe or by our customers. They are the most common tools used and will help you manufacture your Flexpipe solution from A to Z with minimal problems. If you want to learn more about how to work with the Flexpipe modular system, we invite you to read our articles on the best tools for pipe cutting and the best tools for assembly.

Borrowing Lean Manufacturing Concepts from the Automotive Industry

Borrowing Lean Manufacturing Concepts from the Automotive Industry

Jerry Collins – a mechanical engineer with 28 years of experience in the automotive industry – uses the pre-production stage as the critical first step to managing future production costs. It’s during this pre-production stage that Jerry uses modular piping systems as a way to layout his production floor and design material handling systems. This reduces costs and makes it easier to modify those handling systems (if needed) once full-scale production starts.

LISTEN: Audio Interview Jerry Collins
In this interview, Society of Cost Engineers founder Jerry Collins explains to Flexpipe project manager Temie Fessa how modular material handling systems have helped him maximize efficiency and profits.

Your browser does not support the audio element.

Find out how any company in any industry can benefit from using tube and joint systems in the pre-production stage as a way to manage costs.
The Origins of Lean Manufacturing
Lean manufacturing can trace its roots back to Henry Ford’s infamous Model T assembly line and the Toyota Production System (TPS) of the early twentieth century. Sometimes referred to as “lean production” or “just-in-time manufacturing”, lean manufacturing focuses on increasing production throughput while controlling costs and minimizing waste.

With lean manufacturing, companies can increase production throughput without sacrificing their cash position or purchasing excessive inventory. Unfortunately, a large number of companies use some lean concepts while never fully implementing others.
Using Modular Piping for a Mocked Assembly Line
Instead of using lean manufacturing principles during the pre-production stage, several companies only adopt lean concepts long after production has started. Unfortunately, this puts them in a read-and-react position where unforeseen changes in product designs force them to make haphazard and extremely costly adjustments. However, Jerry took an entirely different approach.

Jerry and his team used modular piping solutions to create a mockup front axle and rear axle assembly line for General Motors. As stated by Jerry, “long before we purchased any equipment, we created a whole facility with modular piping and decided early on how our material handling systems would be structured.” This included using tube and joint systems to create mock machines and equipment in order to create a visual presentation of both on the shop floor.

They also used modular piping to create trolleys to test the transit times between work cells, all the while looking for any possible obstructions. They then created temporary structures in order to simulate how future material handling systems would be positioned beside work cells, equipment, and machinery.
Making Immediate Adjustments within Minutes – Not Days or Weeks
[caption id="attachment_38507" align="alignnone" width="1440"] A dedicated material handling shop will allows you to modify quickly and on spot structures that need adjustments.[/caption]

Jerry and his team of engineers chose modular piping solutions during the preproduction stage because of how easily it was to make simple changes. Some of the changes they made to their mock layout took mere minutes, something that is completely impossible to achieve with fixed material handling systems. As Jerry stated, “companies need to plan their material handling systems early on so they can maintain and improve upon their profits margins later.”

Ultimately, the tube and joint solutions replaced all of their larger, fixed-structure material handling frames. According to Jerry, making a single adjustment to their older material handling structures involved sending their heavy-duty racks to “a third party for welding and adjustments which could take weeks and months, whereas if you have a product like Flexpipe, it can be done in an afternoon.”

For Jerry and his team, adopting modular piping systems during the pre-production stage ensured everybody was comfortable with using the solution once production began. So, what are the inherent benefits of using modular piping during the initial pre-production stage?
Adopting Lean Principles in the Pre-Production Stage
Adopting lean concepts in the pre-production stage by using tube and joint systems has three primary benefits. First, it amalgamates the costs associated with laying out the entire production floor for equipment and machinery, while totaling the costs for standing structures, workbenches, shelving, trolleys, flow racks, boards, etc.

This provides companies with a complete picture of their costs. It also allows companies to decide upon how much actual square footage they need for manufacturing. They can avoid the extra costs of leasing/buying too much production space, or conversely, avoid the high costs and delays that come from not having enough production space.

Second, using modular piping solutions in pre-production helps to simplify workflow. Companies have a much easier time choosing which modular piping solutions are needed for all their T-shaped, U-shaped, and S or Z-type work cells. This allows them to maximize the transit times between production work cells, equipment, machinery, and other standing structures. It also helps them choose ideal locations for inventory and part storage.

Third, by adopting tube and joint systems in the pre-production stage, employees are better able to make quick modifications to standing structures and material handling systems once production begins. No more waiting on welding or having to send out heavy-duty racks to third-party suppliers for modifications that may take weeks or months. Instead, with tube and joint systems, the employees can make the changes themselves.

Modular piping is a product designed with lean concepts in mind. Making changes to modular material handling systems is faster, simpler, and far less expensive when compared to fixed-structure systems.
Simple Steps to Using Modular Piping During Pre-production
Again, any company in any industry can use the same approach. It simply comes down to using the following four steps.

1.Use Spaghetti Diagrams to Define Workflow

Spaghetti diagrams allow you to map your workflow so that you have a visual presentation of how physical parts move between part storage, material handling systems, work cells, equipment, and machinery. The goal is to have a sequential process where the parts move naturally and employees aren’t required to walk extremely long distances to move those parts to the next chain in the process.

2.Gather Information About Machinery & Equipment

Defining the physical size of equipment and machinery is an important aspect of maximizing available shop floor space. You’ll need to define the physical dimensions of equipment and machines and visualize how they will be laid out on the shop floor.

3.Define Number of Material Handling Systems

Once you’ve defined the areas of your shop floor occupied by machinery and equipment, it becomes easy to determine the number of material handling systems you’ll require. To help you in the design of those systems, Flexpipe has created the Flexpipe Creator Extension, an innovative software-based solution that allows you to simplify your designs.

4.Simulate Transit Times

By now, your shop floor should be mocked up with locations for equipment, machinery, standing structures, work cells, and material handling systems. A proactive final step involves simulating transit times between each of these structures to ensure that there is sufficient space for employees to move parts and that the distances they travel aren’t too far.

Flexpipe: Make it Work For You
Flexpipe is an industry leader in tube and joint systems with a strong North American footprint. Long recognized as an innovator, Flexpipe is well-known for its affordable modular piping solutions (30% less expensive) and its customer-centric approach to customer service and after-sales support.

Four Benefits of Karakuri in Lean Operations

Four Benefits of Karakuri in Lean Operations

The term Karakuri -or Karakuri Kaizen- is derived from the Japanese word meaning machinery or mechanical device used to assist a process with limited (or no) automated resources. Its origins come from the mechanical dolls in Japan that essentially helped lay the foundations of robotics.

 

Instead of being controlled by software or a computer, the basis of its functionality lies entirely in the overall design of the device. This can range from the simple use of gravity to the use of springs, weights, pendulums, etc.

Many facilities and operations are coming to the conclusion that mechanical automation is the only way to go, as Karakuri Kaizen can provide advantageous and relatively inexpensive solutions that can improve operational processes. This can be achieved by using the "Kaizen" approach, which is based on the idea that the "Kaizen" approach is the only way to improve productivity and reduce costs.
Example of the use of Karakuri in Lean Manufacturing
Karakuri is one of the many tools associated with Lean concepts and methodology. Using its fundamentals allows you to dive deeper into business process improvement, but from a cost reduction perspective - it will ultimately allow you to find innovative solutions with a smaller budget. This is why Karakuri Kaizen is commonly used in Lean Manufacturing. Consider this example:

Toyota had identified an inefficient process within its automotive assembly line in which operators were pushing their material/tool carts by hand. This was resulting in lost productivity and an overall extended production cycle time. So Toyota developed a Karakuri-style cart that can be mounted on the car's engine. Once a car is finished, a weight is released that allows the cart to move to the next vehicle. Toyota also incorporated a tray with parts placed on the fender that allows operators much easier access to materials and tools. Removing non-value-added steps as Toyota has done will progressively reduce process times and allow your operation to produce more, in less time.

Want to know all the ins and outs of building a karakuri structure? Esteban lived the experience and can tell us all about the trials and errors Here is his story

 

Four benefits of Karakuri in Lean Manufacturing
Taking an approach like Toyota, one of the world's largest automakers, can provide substantial benefits to a facility attempting to move to a more Lean approach. Using Karakuri Kaizen can provide you with the elements necessary to maintain a competitive edge within your industry.

• Cost reduction - As mentioned throughout this article, Karakuri Kaizen enables significant cost reduction in a variety of ways. By reducing production cycle time and lowering automation and overall material costs as processes are optimized, operations will be able to reinvest in themselves more, as their bottom line will be positively impacted.

• Process improvement – In synergy with other Lean concepts, Karakuri reduces the overall cycle time by "automating" the process with a device, instead of relying on manual movement. Like the Toyota example, breaking down the process and locating non-value added steps will help determine which elements would benefit from innovative Karakuri solutions and structures.


• Quality improvement – Process improvement has a direct impact on product improvement. An inefficient production process increases the chances of manufacturing defects and potential errors, so process planning and establishing the most efficient route can only further improve product quality.

• The simplicity of maintenance – Automated systems lead to increased maintenance costs, especially for operations that are almost entirely dependent on their automation. This will usually result in the need for a 24/7 maintenance team in case the system fails - which it inevitably will. Karakuri devices are easy to maintain because of their simplicity and the materials they are made of, so managers don't have to spend a fortune on a new department and team to keep everything running well.

Karakuri Kaizen provides a beneficial foundation and framework that ensures your production system continues to optimize processes and operational flow. If you are looking to improve operational efficiency, Karakuri is an indispensable tool that will improve performance and enhance the bottom line.
The mechanisms used to make a karakuri
[caption id="attachment_37825" align="aligncenter" width="871"] Le système de levier est un mécanisme couramment utilisée.[/caption]
1- The lever is one of the most important inventions of karakuri style

 

The lever system is a commonly used structure, especially in simple devices. It allows for easy lifting of heavy objects, as it involves a bar moving on a fixed point (the fulcrum) when a force is applied to it.
2- Inclined planes

 

Inclines are everywhere - they are almost impossible to avoid. Sloping roads, hills and ramps are examples of inclines we encounter every day. The incline is a simple but effective way to transport an object on an elevated surface or to use gravity to your advantage to send an object down.

 
3- The winch

 

A winch is a device that creates or releases tension on a rope or wire to adjust its length, usually by means of a crank. Winches are commonly used in tugboats, fishing boats, cranes and even rescue helicopters.

 
4- The spring

 

The spring is another element frequently used in everyday life by many people. It can be found in a mattress, an enclosure and even in a mouse trap. Springs are made of steel and are available in a variety of designs, including the coil spring. Springs store mechanical energy and release it when a restraining force is removed. One can easily picture a spring when thinking of a retractable pen.

 
5- Magnetic energy

 

It is said that opposites attract - at least that is the case with magnets. Magnets allow for attraction or repulsion and are another commonly used karakuri-style structure, especially in refrigerators and freezers.

 
6- The pulley system

 

Like the other simple systems on this list, the pulley system was a revolutionary idea used in all types of industries. The pulley involves the use of a rope or cord around a rim, which allows for the transmission of energy and motion. It is especially useful when lifting heavy objects; in this regard, the more pulleys added to the system, the more weight is distributed among them, making it easier for the user.

 
7- Pascal's principle

In the visual below, Pascal's principle demonstrates that a force applied at one point to a liquid in a container is accompanied by equal pressure in all directions. F1 pushes down on A1 in a smaller, more condensed area, but this equal force and pressure will be exerted in A2 and up to F2, thus illustrating the principle.

This principle is widely used in many pieces of equipment such as hydraulic systems, car brakes, barber chairs and a variety of equipment.
The first steps with the Karakuri
Like many other facilities, you may be wondering where to start. Flexpipe offers innovative solutions to your process constraints and understands the importance of having the best equipment available for maximum production efficiency. Our project managers can help you generate ideas and assemblies for your Karakuri structure to take productivity and operational efficiency to the next level. Flexpipe offers innovative solutions to your process constraints and understands the importance of having the best equipment available for maximum production efficiency.Our project managers are able to help you generate ideas and assemblies for your Karakuri structure, to push productivity and operational efficiency to the next level.

You don't have to spend a small fortune to be operationally efficient. Karakuri structures are simple, innovative solutions that are a must for any team looking for cost-saving solutions. Reduce cycle time, improve processes and production quality by contacting Flexpipe for assistance in designing and building a Karakuri structure for your facility.

Material Flow : A Key Element in Circular Manufacturing

Material Flow : A Key Element in Circular Manufacturing

Circular manufacturing is a system for maximizing system flow and productivity while reducing waste in a manufacturing or logistics site.

In this video, Robert Simonis, principal consultant at KCE Consulting, explains how material flow is a key element in circular manufacturing.


Implementing Waterspider
Waterspider, or mizusumashi,  is a term that refers to a specific person whose main job is to take care of tasks such as supplying material at workstations, cells, or the point of use. The material handlers allow the other workers to carry out their value-added tasks without distraction, thus enhancing the productivity of the chain and the accomplishment of standardized work in standard time.

Implementing a waterspider system takes time, it’s a process of continuous improvement that needs constant observation, testing and adapting to create the standardized work that ensures the right material at the right time and right place.
How Material Flow Enhances Productivity
Once the rhythm of the waterspider’s activities has been established and mastered, the  benefits come into play: it brings a steady pace to the production process, regulating the workflow and avoiding the vicious cycle of sprints and rest. The workers benefit from steady work, less stress and are therefore able to keep their level of energy higher.

[caption id="attachment_27360" align="alignnone" width="2260"] Water Spider is the go-to person in a well-organized area[/caption]

Typically, keeping 2 hours or less of material in the cell and resupplying every hour is optimal. It gives the production process a buffer of an hour, which makes it possible to compensate when a production cycle is a few minutes early or late because of unexpected problems.  Steady resupply also standardizes and minimizes the space needed for material in the workspace, and helps minimize the operator cycle time.

The buffer makes it possible to cover for variation caused by the material delivery, scrap, quality, and other sources.  The operator never has to wait for material or take time to signal for material resupply and is able to optimize productivity.
Controlling How Much Material is in the Cell Helps Reduce How Much Space is Needed
[caption id="attachment_27374" align="alignnone" width="2560"] The traditional three-bin kanban system[/caption]

To control how much material is in the cell, a steady resupply cycle has to be established.

The traditional three-bin kanban system is a good way to optimize circular manufacturing. In this system, there is:

One bin the operator is working out of;
One bin that’s spare;
One bin that’s in the process of being refilled.

Often linked to the manufacturing processes, this system helps to control inventory at the point of use and ensure steady material flow, both into and out of the different steps of the production chain.
Working in Batch Mode

Going back to batch mode is often a reflex when implementing a circular manufacturing system because workers tend to worry they’ll have to deal with interruptions caused by a lack of material or parts.

What many operators don’t realize is that in batch mode, if the material handling system is not optimized, they’ll end up with even more downtime. The challenge will then be to fix the handling system at the same time as the cell.

Either way, material and material handling have to be synchronized with the change in the cell.
Prototyping the Production Line to Optimize Material Flow
Depending on the technology available and the context, 3 levels of prototyping can be established:

First, drawing a layout of the factory on paper, cutting the different parts of the layout and moving things around to determine and see the options to consider.
Then, creating a 2 dimensional model using chairs, tables or boxes will allow the operator to see it and analyze the options more seriously.
The final phase of the prototyping process would be to use a full 3D model that covers both height and depth to allow practice with the material handler, maintenance, management, and others.

Either way, to facilitate the prototyping process, the best case scenario is when the equipment is mobile and relatively small so the real pieces can be moved around easily.

Mr. Simonis relates he once visited a manufacturer that had 1800 sewing machines. Because each machine was independent, they were able to move them around easily. They physically changed, tested and adapted the layout with the actual equipment -thanks to the mobile quality of the machines-, which made the process flow a lot easier.
A Common Fear When Bringing Waterspider to a Production Line
[caption id="attachment_27354" align="alignnone" width="2260"] The water Spider must be intimate with the process or work cell they support[/caption]

Typically, management fears that implementing the water spider system is going to require a lot more labor -they usually expect that they’ll need twice as many guys!

The best way to prove to them that it won’t be the case is to show them.

Quoting Benjamin Franklin’s vastly imputed saying “Tell Me and I Forget, Teach Me and I May Remember, Involve Me and I Learn”, Mr. Simonis mentions that no matter what the fears are, if you get people to actually try out material handling solutions and options, it solves a lot of problems and answers a lot of questions.

Brainstorming is a good way to start, but trystorming has to follow quickly. Testing out ideas and trying options is the most effective way to determine the best solution for process optimization.
Trystorming to Improve the Production Process
There’s nothing like concrete experience to enhance people’s perspective and creativity. Trystorming can start with dividing the production process into smaller steps, then desiccating the main stages, and finally trying different options and layouts.

Trying out the system and seeing what works and what doesn’t will allow operators to learn more from the designing phase and assimilate the new processes more easily. At a facility level, creating one cell and getting people used to doing it will ensure that they learn from the testing phase.

These steps will allow for the best practice to be put in place, improving the material handling flow and making the circular manufacturing process as efficient as it can be!

About our Lean expert - Robert Simonis

Robert H. Simonis is the senior consultant at KCE Consulting LLC. A recognized lean enterprise expert and sought-after speaker and writer, he has over 25 years of experience in automotive, electronics, machining, logistics, and complex assembly operations.

____________________________________________________________________________
WHAT CAN FLEXPIPE DO TO OPTIMIZE YOUR PLANT EFFICIENCY?
Flexpipe Modular industrial pipe racking system can help you with implementing continuous improvement principles. Your team’s creativity can result in a 10% increase in productivity per year. It has been a proven system for more than 50 years now.

See how the modular system improve operational efficiency while saving time in manufacturing processes at Waterax.

9 tips for a lean and secure plant after the COVID-19-imposed shutdown

9 tips for a lean and secure plant after the COVID-19-imposed shutdown

The time has come for many North American manufacturers to get back to work. The situation will obviously not be the same as it was before. Ways of doing things will have to be adjusted. In the coming weeks, plants will be implementing a host of new measures to comply with new government rules, particularly in terms of health and safety. If this is the case for your company, here are nine tips, based on the principles of continuous improvement (lean manufacturing) that will help you prepare for a safe return to work.
 

 
1– Distancing your employees from each other
It's not always easy to maintain a physical distance of two meters on an assembly line. Employees often work very close to each other and have little room to maneuver.

By using modular aluminum panels or those manufactured by Flexpipe, these new physical constraints can be more easily met. For example, you can add acrylic panels between employees working opposite each other or a tubular panel, with an acrylic interior, for employees working side by side. Acrylic is currently hard to find; you can, therefore, also hang mica canvases with eyelets on your structure or workstation that are attached to a steel or tubular frame.

In the event that you cannot modify your existing workstation, install large panels, either wheeled or fixed, between employees instead. Flexpipe offers several such modular panels. Why should you choose Flexpipe? You can take them down and reuse them to make a cart, for example, when the pandemic subsides.

 

[caption id="attachment_18909" align="alignnone" width="814"] Here are dividing panels for working side by side[/caption]

 

[caption id="attachment_18939" align="alignnone" width="814"] Here are dividing panels for face to face work.[/caption]

 

[caption id="attachment_18888" align="alignnone" width="814"] Here is a separator panel that will help create a distance between employees.[/caption]

2– Transforming your equipment into mobile units
Are your workstations and equipment on wheels? If they are not, take advantage of the current context to install them. It is an inexpensive investment that helps you increase the mobility of your work environment so that you can more easily comply with the rules of physical distancing. There are also various braking systems, such as foot brakes or total locks, to stabilize workstations.

For example, at Flexpipe, we have relocated part of the staff in our building reserved for assembly to our warehouse. This operation, aimed at reducing contact between employees, was simple to carry out since all our workstations are equipped with four- to six-swivel wheels.

[caption id="attachment_19444" align="alignnone" width="814"] Point of use tooling (POUT) with four swivels caster with total lock brake[/caption]

 

[caption id="attachment_19450" align="alignnone" width="814"] Steel Tool cabinet that was put on caster[/caption]

 
3– Strengthening your 5S program
Even though 5S can increase productivity and reduce the risk of accidents, it will also be advantageous when disinfecting work tools.

By using the 5S program, you will clean up your workstations to leave only the tools your workforce uses regularly. For example, at Flexpipe, an employee disinfects work tools, but also door handles and kitchen equipment three times a day. Thanks to the 5S program, our disinfection manager is much more efficient because he does not waste time disinfecting unused tools.

Already have a 5S program in place? Remind your staff about the importance of being rigorous, especially during a pandemic.

 

[caption id="attachment_19454" align="alignnone" width="814"] The 5S system facilitates the disinfection of workstations.[/caption]

See how the facilitators of hygiene measures apply in the medical sector.
4– Reviewing your work procedures and standards
While your plant is reopening, why not take advantage to review your work procedures and standards to avoid, as much as possible, the sharing of tools and equipment? In addition to improving your processes, you will provide a safer environment for your employees.

Over the next few weeks, you may have to operate with limited staff. If you have never done so, don't hesitate to reassign one of your temporarily laid-off employees to update your work procedures and standards, especially if you are eligible for government assistance for businesses.
5– Using visual cues
Visual cues are quick and easy to set up. Using different colored tape, draw lines on the ground to clearly delineate the corridors and separate work areas in your plant. For example, at Flexpipe, we have created one-way corridors to prevent people from crossing each other.

Don't hesitate to use vinyl that sticks to the floor to clearly mark the two-meter distance your staff must respect, especially in busy areas such as the cafeteria.

[caption id="attachment_19513" align="alignnone" width="1280"] Visual cues are quick and easy to set up[/caption]

 
6– Managing the flow of materials to work cells
Consider identifying the materials, raw materials, work in process, and finished products within each work cell in your plant to limit contact between your employees and other stakeholders.

For example, use flow racks for your hardware parts. With this system, the inventory handler brings the parts to the back, and the assembler takes them from the front, without any contact between the two.

Apply the same principle to your shipments. Clearly define the area in which the products are to be picked up, at a certain distance from your workspace.

 

7– Limiting unnecessary travel
The pandemic is one of the best reasons to encourage your employees to stay at their workstations. Indeed, unnecessary movement and travel are one of the most important wastes in value-added production because it does not add value.

At Flexpipe, we have put in place a policy to reduce the number of people walking around the plant.

Our assemblers receive their parts from a single employee who goes around the workstations with a trolley. If for any reason (defective part, lost part, etc.), one of our assemblers needs new parts, they must stay at their station and notify their supervisor. To avoid a recurrence, the employee is asked to describe as accurately as possible the problem they just encountered while waiting for the new parts. Once the problem has been described, another employee will take over the task of finding a solution to the problem.

 
8– Setting up POUTs for sanitary facilities
Like most factories, you have probably purchased sanitary equipment (gloves, masks, disinfectants, etc.). To improve efficiency, set up Points of Use Tooling (POUTs), which are small workstations in which sanitary equipment is neatly stored and easily accessible, at strategic points in your plant.

Use this opportunity to post the company's policies on COVID-19 at each POUT.

 

 
9– Deliver elevated quality standards right from the beginning
Production defects are one of the most common wastes in value-added production. Especially in the context of coronavirus, positively encourage your employees to do quality work right from the beginning.

Why should you do this? Because a poorly assembled part is manipulated by many employees who will try to discover the problem and fix it. In contrast, impeccable work involves fewer people and less travel. You will limit the risks of propagation while increasing your productivity.

T-slot Aluminum Extrusions Vs. Pipes and Joints

T-slot Aluminum Extrusions Vs. Pipes and Joints

Many engineers are making the mistake of using T-slot aluminum extrusions everywhere on their production line. Here's how to avoid creating overkill, overbuilt, and overpaid structures.

This guide will cover the following:

What Are the Advantages of Each System?
How to Choose a Modular Systems?
What Type of Structure do You Want to Build?
What Loading Capacity Do You Need?
Does Your Structure Will Evolve Over Time?
What's Your Budget?
Is the Aesthetics a Priority?
Takeaway

Determine the loading capacity of a structure using our CAPACITY CHARGE CALCULATOR.

DOWNLOAD

What Are the Advantages of Each System?
These modular systems should not be considered competitors because they have their unique advantages and should be used in deferent situations. Because T-slot aluminum constructions are sturdier and more precise, they are an obvious choice for production systems involving robotics and automation. On the other hand, the pipe and joints system, perfectly embody the Lean Manufacturing concept. It's simple to assemble and customize while also been more affordable.

Pipes and Joints

Much lower pricing
Structures can be assembled faster
Easy to design and assemble
Order online
Structures can be easily tested, improved and adapted for lean purposes

T-slot Aluminum Extrusions

Heavier load/charging capacity
Make sturdier structures that can take rapid and repetitive movements
Modern and sleek style 
More precision
Ideal for jigs and robotics
More components and parts to integrate robotics and automation systems

How to Choose a Modular Systems?
When analyzing different modular system options to implement or adapt a production line, a lot must be considered. Maximizing a production floor's efficiency, ensuring employees are working in a safe, ergonomic manner, and ensuring the production blueprint can be adapted over time are key points to keep in mind throughout the conceptualization process.

While both T-slot aluminum profiles such as 80/20's or Vention's and tubular systems like Flexpipe's offer great solutions to manufacturers and design engineers. The products have unique characteristics that will influence how they will be of better use in a production context.

What Type of Structure do You Want to Build?
Because T-slot aluminum constructions are sturdier, they are an obvious choice for production systems involving robotics and automation. 

They are made with refined equipment that can offer very tight tolerances. Their durable and resistant nature can also support a variety of robotic applications facing rapid and repetitive movement, such as:

Framing for robotic mounting structures
Jigs and fixtures
Automation systems
High precision conveyor systems or assembly station

It's A Matter of High Precision
There is an intubation space of 1 inch in the tubular system when you insert the pipes into the fittings -even if the tubes should be fully inserted. This remaining space makes the assembly process easier by giving a margin of error for small cutting or design mistakes. 

While this detail might come in handy in some contexts, the facts remain: tubular structures are not as precise as aluminum framing systems. 
The tubes and fittings structures are more adapted to other types of use. 
Here are a few examples of various material handling systems that would be more efficiently built with pipes and joints than aluminum extrusions.  

It would be considered "overkill, overbuilt and overpaid" if you consider building the following structure with aluminum extrusions:

Flow racks 

Return lines for empty containers to ensure continuous production. 
Supermarket racks to have stock nearby.
L-shaped flow racks for the proximity of parts.
One-piece flow conveyor stations for lean manufacturing.
Gravity-fed workstations to free up floor space.

For more information on flow racks, check out this article on the most common types of modular gravity flow racks and how they can increase production line efficiency.

Racks

Adaptable racks.
Shelving with added value. 
WIP racks to reduce defects.
Storage racks are intended as a poka-yoke.

For more information on racks, check out this guide on the most popular modular industrial racks and shelving systems.

Workstations and workbenches 

U-Cell stations will improve your lead time. 
Ergonomic stand-up stations and work centers are great to have task-relevant information nearby. 
Personalized adjustable working tables are perfect to meet your worker's needs. 
ESD workstations to reduce defects.

For more information on workstations and workbenches, check out this guide on the different types of custom-made industrial workstations & workbenches.

Modular boards

Point-of-use or shadow boards.
Rotating cube and 8-faced boards.
Meeting space.
1, 2, 3, or 4 sided boards.

For more information on boards, check out these types of modular boards.

Carts

Kitting carts.
Tuggable carts.
WIP carts
Warehouse picking carts.
Truck carts.

For more information on carts, check out this guide on the popular types of carts for industrial material handling.

What Loading Capacity Do You Need?
The most robust structures made with the pipe and joint systems can support a maximum charge of 2000 pounds!

Pipe and joint systems like Flexpipe mostly use 28 mm OD pipes, with or without plastic coatings. The thickness of the pipes generally varies between 1 and 2 mm, providing various solidity levels which can be adapted to the project's specifications. But since the tube's diameter stays the same, Flexpipe structures will never be as strong as aluminum extrusions structures. The metal joints and various fasteners also contribute to the strength of the frame.

For more information on loading capacities, check out this guide created to help you calculate the modular structures' loading capacity.

Determine the loading capacity of a structure using our CAPACITY CHARGE CALCULATOR.

DOWNLOAD

Being able to choose between different sizes of profiles ranging from 20 millimeters square to as large as 180 by 360 millimeters makes t-slot profiles a perfect option for projects involving very heavy loads.

T-slotted aluminum profiles are offered in different types and sizes, the most popular being the 6063-T5, often ranging from 1 X 1" to 1,5 X 1,5" inches. The choices in inch or millimeter square make it an excellent choice for light to heavy-duty framing projects.

According to this article on Formaspace, the biggest aluminum profiles used to make 80/20 extruded frames carry very heavy charges: 6105-T5 aluminum alloy has a tensile strength of 35,000 lbs. per square inch! 

Does Your Structure Will Evolve Over Time?
Because of the lower costs of pipes and fittings "modular systems" and the simplicity of the tubular approach, tests can be carried out more easily before implementing new structures. Manufacturers can, therefore, quickly reconfigure a wide range of assembly line components based on feedback, with minimal capital outlay. 

Engineers can spend more time brainstorming and continually optimizing assembly processes. Rather than designing each structure from scratch, resulting in higher employee satisfaction and optimization of the production process!

Because pipes and fittings systems are more straightforward and involve fewer components, it's easier for engineers to shop online, figure out how they can use the product for their specific needs, and become creative more quickly! 

It's also easier for employees working on the assembly lines to get involved in the optimization process, stay proactive, and improve their work tools. Which is excellent for professional satisfaction and motivation!

Since the cost is higher, the testing part becomes more expensive and financially risky with the aluminum extrusion profiles. Making the whole testing and trying process more complicated than it is with the tubular system. This constraint tends to result in a longer, more complex planning process when creating new modular structures. 
Adapting and Evolving: a Constant Concept
Perfectly embodying the Lean Manufacturing concept, the Flexpipe production systems can easily be adapted to follow the production's new needs and reality. The simplicity of the structures ensures that any changes can be applied quickly and tested right away, thus leaving room for errors and constant improvement along the way.

Modifying already existing T-slot frames is a little more complex since they're also more complicated to assemble in the first place. Because of the various components involved in the system, the modular aspect of the structures is not as easily adaptable to feedback and testing. On the other hand, the multiple parts open up more options and possibilities for robotic integration and automation of specialized types of systems.

What's Your Budget?
Although the products' cost varies depending on the specifications of the project, aluminum tends to be about 30% more expensive than Flexpipe. 

For some manufacturing companies designing and working with an important number of workstations and production systems, the choice of material becomes very important. General application has a significant importance when it comes to choosing the best option. 

However, when it comes to intra-logistic applications where push-carts and flow racks are required, the cost and flexibility of pipe and joints systems trump T-slot aluminum extrusion profiles.

Is the Aesthetics a Priority?
Some professionals like the sober, straight lines, and modern looks of the T-slot aluminum profiles. Therefore, it could be considered a better choice for the aesthetics of their framing system. 

While it is possible to buy colored aluminum extrusions, it is more common to see clear aluminum finish or the typical blueish color of anodized aluminum often seen on Vention's extrusions for example, because of the considerable costs involving the powder coating process for coloration. 

On top of the traditional black and stainless colors, tubular systems like Flexpipe offer blue, yellow, green, white, red, orange, gray, and ivory colored tubes. The choices in colors mostly aim to make it easier to use color-coding systems on a production floor. Still, they can also bring a lighter atmosphere to a work environment! 

If you're looking for a sleeker, sober look, Flexpipe's stainless tubes matched with chrome-plated joints could very well match your taste. 

To better visualize what a pipe and joint structure look like, check out our photo gallery featuring structures assembled internally by the Flexpipe team.

Takeaway
While both products offer customized, creative and efficient solutions in various production structures, their technical particularities make their use complementary. 

Each of them is more appropriate in different contexts of the production system. On your typical assembly line, any robotics or automation-related construction system will likely be more productive and precise if built with t-slotted aluminum profiles. On the other hand, pipes and fittings systems will be the obvious choice when building flow racks, workstations, modular boards, or carts!

Temie Fessa, a project manager for Flexpipe who has been working in the field for over ten years, says many of his clients will use both systems in different contexts. He points out that when engineers or consultants have been using aluminum extrusions on their production line for a long time, they'll tend to keep the same habits when designing new structures, as a professional legacy. Because they are so used to the t-slot aluminum framings, they won't question their choices or look for other options unless they are given a specific assignment related to budget cuts, for example.

And since the price of steel tubes and fittings is much lower than aluminum extrusions, once they've discovered the tubular systems and how easy it is to use, many companies will start integrating the tubular products as much as they can in the production environment. Especially when they don't need the heavy-duty aspect or the precision provided by the strut profiles. Using steel pipes tubular systems, therefore, allows them to cut the costs without any downside.